Huawei назвала 10 главных трендов интеллектуальных фотоэлектрических систем

27 декабря 2022
(PRNewsfoto/Huawei)

Компания Huawei провела конференцию «10 главных трендов в сфере интеллектуальных фотоэлектрических систем» (Smart PV) на тему «Придание импульса солнечной энергетике как основному источнику энергии». В рамках конференции Чэнь Гогуань (Chen Guoguang), президент Huawei Smart PV+ESS Business, поделился мыслями компании Huawei о 10 тенденциях в сфере интеллектуальных фотоэлектрических систем с точки зрения многосценарного сотрудничества, цифровой трансформации и повышения безопасности.

По мере увеличения доли возобновляемых источников энергии в фотоэлектрической отрасли наблюдается бурный рост, однако перед ней по-прежнему стоит множество вызовов. Речь, среди прочего, идет о поиске способов дальнейшего снижения нормированной стоимости энергии (LCOE), повышения эффективности эксплуатации и технического обслуживания, поддержания стабильности энергосистем по мере увеличения использования возобновляемых источников энергии и обеспечения сквозной безопасности системы.

«На фоне стремительного развития солнечной энергетики эти проблемы также создают возможности», — заявил Чэнь Гогуань. Будучи прогрессивной компанией, Huawei стремится делиться своими идеями и думать вместе со своими партнерами, а также с организациями и отдельными лицами, заинтересованными в экологически безопасном и устойчивом развитии.

Тренд 1: генератор PV+ESS

По мере того как к энергосети подключается все больше возобновляемых источников энергии, возникают различные сложные технические проблемы с точки зрения устойчивости системы, баланса мощности и качества электропитания.

Поэтому для повышения эффективности управления активной/реактивной мощностью и способности реагировать, а также для активного смягчения последствий колебаний частоты и напряжения необходим новый режим управления. Благодаря интеграции фотоэлектрических элементов и систем накопления энергии (ESS), а также технологии формования энергосети мы можем создать «интеллектуальные генераторы PV+ESS», в которых используется управление источником напряжения, а не управление источником тока, и которые обеспечивают мощную инерционную поддержку, стабилизацию переходного напряжения и возможности преодоления неисправностей. За счет этого фотоэлектрические элементы будут формировать энергосеть, нежели просто следовать ее конфигурации, что позволит увеличить долю фотоэлектрических элементов в сети.

Важной вехой в применении этих технологий стал проект Red Sea в Саудовской Аравии, в рамках которого компания Huawei представила полный комплекс решений, включая интеллектуальный контроллер солнечных элементов и аккумуляторную систему накопления энергии (BESS) в качестве одного из основных партнеров. В этом проекте используются фотоэлектрические элементы мощностью 400 МВт и ESS мощностью 1,3 ГВт·ч для поддержки энергосети, которая заменяет традиционные дизельные генераторы и обеспечивает экологически чистое и стабильное электропитание для 1 миллиона человек, создавая первый в мире город, питающийся от полностью возобновляемых источников энергии.

Тренд 2: высокая плотность и надежность

Обеспечение высокой мощности и надежности оборудования на солнечных электростанциях будет объектом повышенного внимания. Приведем в качестве примера фотоэлектрические инверторы. Напряжение постоянного тока инверторов к настоящему времени повысилось с 1100 В до 1500 В. За счет применения новых материалов, таких как карбид кремния (SiC) и нитрид галлия (GaN), а также полной интеграции цифровых технологий, технологий силовой электроники и терморегулирующих технологий, удельная мощность инверторов в течение следующих пяти лет, по имеющимся оценкам, увеличится примерно на 50%, при этом будет сохранена высокая надежность.

Солнечная электростанция мощностью 2,2 ГВт в Цинхае, Китай, находится на высоте 3100 м над уровнем моря и насчитывает 9216 интеллектуальных фотоэлектрических контроллеров (инверторов) Huawei, стабильно работающих в этих суровых условиях. Совокупная доступность в часах инверторов Huawei превышает 20 миллионов часов, а их коэффициент доступности достигает 99,999%.

Trend 3: силовая электроника на уровне модулей (MLPE)

Благодаря отраслевой политике и технологическому прогрессу в области распределенной фотоэлектрической генерации в последние годы наблюдается динамичное развитие. Перед нами стоят такие задачи, как повышение эффективности использования ресурсов крыши, обеспечение высокой выработки энергии и обеспечение безопасности системы PV+ESS. Поэтому необходимо обеспечить усовершенствованное управление.

В фотоэлектрической системе силовая электроника на уровне модулей (MLPE) относится к силовому электронному оборудованию, способному выполнять усовершенствованное управление одним или несколькими фотоэлектрическими модулями, включая микроинверторы, оптимизаторы мощности и разъединители. MLPE обладает уникальными характеристиками, такими как генерация электроэнергии на уровне модулей, контроль и безопасное отключение. По мере повышения безопасности и интеллектуальности фотоэлектрических систем ожидается, что к 2027 году уровень проникновения MLPE на рынке распределенной фотоэлектрической генерации достигнет 20–30%.

Тренд 4: системы накопления энергии типа Smart String 

По сравнению с традиционными централизованными решениями ESS, в системе Smart String ESS используется распределенная архитектура и модульная конструкция. В этой системе применены инновационные технологии и цифровое интеллектуальное управление для оптимизации энергии на уровне блоков аккумуляторных батарей и управления энергией на уровне шкафов. Они обеспечивают повышение энергии разряда, оптимизацию инвестиций, простоту эксплуатации и технического обслуживания, а также безопасность и надежность на протяжении всего жизненного цикла ESS.

В 2022 году в рамках проекта ESS мощностью 200 МВт/200 МВт·ч в Сингапуре (крупнейший проект BESS в Юго-Восточной Азии) в целях регулирования частоты и создания вращающегося резерва была задействована система Smart String ESS для усовершенствованного управления зарядом и разрядом для достижения постоянной выходной мощности в течение длительного времени и обеспечения преимуществ регулирования частоты. Кроме того, функция автоматической калибровки SOC (состояние заряда) на уровне аккумуляторного блока снижает затраты на рабочую силу и значительно повышает эффективность эксплуатации и технического обслуживания.

Тренд 5: усовершенствованное управление на уровне ячеек

Подобно переходу фотоэлектрических систем на MLPE, литиевые системы BESS тоже перейдут на управление нижнего уровня. Только усовершенствованное управление на уровне аккумуляторных ячеек может лучше справляться с проблемами в плане эффективности и безопасности. В настоящее время традиционные системы управления аккумуляторными батареями (BMS) могут лишь обобщать и анализировать ограниченные данные и почти не позволяют обнаруживать неисправности и генерировать предупреждения на ранней стадии. Поэтому BMS должны стать более чувствительными, интеллектуальными и даже прогностическими. Это зависит от сбора, вычислений и обработки большого количества данных, а также технологий искусственного интеллекта, используемых для поиска оптимального режима работы и составления прогнозов.

Тренд 6: интеграция PV+ESS+сеть 

Что касается выработки электроэнергии, сочетание фотоэлектрических элементов и ESS все чаще используется в новых экологически чистых энергетических базах, с которых электроэнергия поставляется в энергоузлы через линии электропередачи сверхвысокого напряжения. Что касается энергопотребления, то во многих странах все большую популярность приобретают виртуальные электростанции (VPP). VPP станции сочетают в себе обширные системы распределенной фотоэлектрической генерации, системы ESS и контролируемые нагрузки. Кроме того, в них используется гибкое планирование для энергоблоков и систем накопления для достижения максимальной экономии и пр.

Таким образом, создание устойчивой энергетической системы, объединяющей в себе фотоэлектрические элементы, ESS и сеть для генерации солнечной энергии и передачи ее по энергосети станет ключевым элементом обеспечения энергетической безопасности. Мы можем интегрировать цифровые технологии, технологии силовой электроники и накопления энергии для достижения многоуровневого энергетического взаимодействия. Виртуальные электростанции могут рационально управлять, эксплуатировать и торговать мощностями крупных распределенных систем PV+ESS с использованием множества технологий, включая 5G, искусственный интеллект и облачные технологии, которые будут внедряться во всех новых странах.

Тренд 7: повышение безопасности

Безопасность является краеугольным камнем развития отрасли фотоэлектрических элементов и систем накопления энергии. Для ее обеспечения мы должны рассматривать все сценарии и связи, а также обеспечивать полную интеграцию технологий силовой электроники, электрохимических, терморегулирующих и цифровых технологий для повышения безопасности системы. На солнечной электростанции более 70% всех неисправностей приходится на отказы со стороны постоянного тока. Поэтому важно, чтобы инвертер поддерживал интеллектуальное разъединение цепи и автоматическое распознавание подключения. В сценарии распределенных фотоэлектрических элементов функция AFCI (Arc Fault Circuit Breaker) станет стандартной конфигурацией, а функция быстрого отключения на уровне модулей обеспечит безопасность технического персонала и пожарных. В сценарии ESS для внедрения усовершенствованного управления начиная с аккумуляторных элементов и заканчивая всей системой необходимо задействовать множество технологий, таких как силовая электроника, облачные вычисления и искусственный интеллект. Традиционный режим защиты, основанный на пассивном реагировании и физической изоляции, уступил место активной автоматической защите, которая нашла воплощение в многомерной конструкции безопасности, охватывающей все составляющие — от аппаратного до программного обеспечения и от структуры до алгоритма.

Тренд 8: безопасность и надежность

Помимо преимуществ, фотоэлектрические системы также несут в себе различные риски, в том числе с точки зрения безопасности оборудования и информации. К рискам, связанным с безопасностью оборудования, относится главным образом отключение систем, вызванное неисправностями. К рискам, связанным с информационной безопасностью, относятся внешние сетевые атаки. Чтобы справиться с этими вызовами и угрозами, предприятиям и организациям необходимо создать полный набор механизмов управления «безопасностью и надежностью», включая надежность, доступность, безопасность и устойчивость систем и устройств. Кроме того, нам необходимо обеспечить защиту личной и экологической безопасности, а также конфиденциальности данных.

Тренд 9: цифровизация

Традиционные солнечные электростанции имеют большое количество оборудования и не имеют достаточно каналов сбора информации и ведения отчетности. Большая часть оборудования не может «общаться» между собой, что сильно осложняет внедрение усовершенствованного управления.

С внедрением передовых цифровых технологий, таких как 5G, Интернет вещей (IoT), облачные вычисления, сенсоры и большие данные, солнечные электростанции могут отправлять и получать информацию, используя «биты» (информационные потоки) для управления «ваттами» (энергетическими потоками). Это позволяет обеспечить прозрачность, управляемость и контролируемость всей цепочки генерация-передача-хранение-распределение-потребление.

Тренд 10: применение ИИ

По мере перехода энергетической отрасли к эпохе данных вопрос о том, как лучше собирать, использовать и максимизировать ценность данных, стал одной из главных тем отрасли.

Технологии искусственного интеллекта могут широко применяться в сфере возобновляемой энергетики и играть незаменимую роль на протяжении всего жизненного цикла системы PV+ESS, включая производство, строительство, эксплуатацию и техническое обслуживание, оптимизацию и пользование. Конвергенция технологий искусственного интеллекта и таких технологий, как облачные вычисления и обработка больших данных, углубляется, а цепочка инструментов, ориентированная на обработку данных, обучение моделей, развертывание и эксплуатацию, а также мониторинг безопасности, будет расширена. В сфере возобновляемой энергетики искусственный интеллект, как и силовая электроника и цифровые технологии, будет способствовать глубокой трансформации отрасли.

В конце своего выступления Чэнь Гогуань отметил, что конвергентные сферы применения 5G, облачных вычислений и ИИ формируют мир, в котором все системы обладают сенсорными способностями, взяимосвязаны и интеллектуальны. Это происходит быстрее, чем мы думаем. Компания Huawei назвала 10 основных тенденций в сфере солнечной энергетики и описала экологичный и интеллектуальный мир ближайшего будущего. Мы надеемся, что люди, представляющие все слои общества, смогут объединить свои усилия для достижения углеродной нейтральности и построения более экологичного и светлого будущего.

Другие новости

Организаторы конкурса на лучшее выполнение комплекса ГТО среди школ назвали победителей

Организаторы конкурса на лучшее выполнение комплекса ГТО среди школ назвали победителей. Лучшей среди московских школ…

Платежные стикеры Tinkoff Pay: 60 тысяч клиентов Тинькофф протестировали платежный инструмент

Клиенты Тинькофф получили первые 60 тысяч платежных стикеров Tinkoff Pay. Заявки на стикер принимаются через…

Политика не вмешательства. Казахстан останется надежным партнером России        

Россия всеми силами пытается не допустить еще одной эскалации у своих границ, и в условиях…